Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Atmospheric Measurement Techniques ; 16(8):2237-2262, 2023.
Article in English | ProQuest Central | ID: covidwho-2304944

ABSTRACT

Nitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from 4-year (May 2018–June 2022) TROPOspheric Monitoring Instrument (TROPOMI) observations by combining a wind-assigned anomaly approach and a machine learning (ML) method, the so-called gradient descent algorithm. This combined approach is firstly applied to the Saudi Arabian capital city of Riyadh, as a test site, and yields a total emission rate of 1.09×1026 molec. s-1. The ML-trained anomalies fit very well with the wind-assigned anomalies, with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites: over a cement plant and power plants as well as over areas along highways. Using the same approach, an emission rate of 1.99×1025 molec. s-1 is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable with the Copernicus Atmosphere Monitoring Service (CAMS) inventory.Weekly variations in NO2 emission are highly related to anthropogenic activities, such as the transport sector. The NO2 emissions were reduced by 16 % at weekends in Riyadh, and high reductions were found near the city center and in areas along the highway. An average weekend reduction estimate of 28 % was found in Madrid. The regions with dominant sources are located in the east of Madrid, where residential areas and the Madrid-Barajas airport are located. Additionally, due to the COVID-19 lockdowns, the NO2 emissions decreased by 21 % in March–June 2020 in Riyadh compared with the same period in 2019. A much higher reduction (62 %) is estimated for Madrid, where a very strict lockdown policy was implemented. The high emission strengths during lockdown only persist in the residential areas, and they cover smaller areas on weekdays compared with weekends. The spatial patterns of NO2 emission strengths during lockdown are similar to those observed at weekends in both cities. Although our analysis is limited to two cities as test examples, the method has proven to provide reliable and consistent results. It is expected to be suitable for other trace gases and other target regions. However, it might become challenging in some areas with complicated emission sources and topography, and specific NO2 decay times in different regions and seasons should be taken into account. These impacting factors should be considered in the future model to further reduce the uncertainty budget.

2.
Atmospheric Chemistry and Physics ; 23(7):3905-3935, 2023.
Article in English | ProQuest Central | ID: covidwho-2276300

ABSTRACT

In orbit since late 2017, the Tropospheric Monitoring Instrument (TROPOMI) is offering new outstanding opportunities for better understanding the emission and fate of nitrogen dioxide (NO2) pollution in the troposphere. In this study, we provide a comprehensive analysis of the spatio-temporal variability of TROPOMI NO2 tropospheric columns (TrC-NO2) over the Iberian Peninsula during 2018–2021, considering the recently developed Product Algorithm Laboratory (PAL) product. We complement our analysis with estimates of NOx anthropogenic and natural soil emissions. Closely related to cloud cover, the data availability of TROPOMI observations ranges from 30 %–45 % during April and November to 70 %–80 % during summertime, with strong variations between northern and southern Spain. Strongest TrC-NO2 hotspots are located over Madrid and Barcelona, while TrC-NO2 enhancements are also observed along international maritime routes close the strait of Gibraltar, and to a lesser extent along specific major highways. TROPOMI TrC-NO2 appear reasonably well correlated with collocated surface NO2 mixing ratios, with correlations around 0.7–0.8 depending on the averaging time.We investigate the changes of weekly and monthly variability of TROPOMI TrC-NO2 depending on the urban cover fraction. Weekly profiles show a reduction of TrC-NO2 during the weekend ranging from -10 % to -40 % from least to most urbanized areas, in reasonable agreement with surface NO2. In the largest agglomerations like Madrid or Barcelona, this weekend effect peaks not in the city center but in specific suburban areas/cities, suggesting a larger relative contribution of commuting to total NOx anthropogenic emissions. The TROPOMI TrC-NO2 monthly variability also strongly varies with the level of urbanization, with monthly differences relative to annual mean ranging from -40 % in summer to +60 % in winter in the most urbanized areas, and from -10 % to +20 % in the least urbanized areas. When focusing on agricultural areas, TROPOMI observations depict an enhancement in June–July that could come from natural soil NO emissions. Some specific analysis of surface NO2 observations in Madrid show that the relatively sharp NO2 minimum used to occur in August (drop of road transport during holidays) has now evolved into a much broader minimum partly de-coupled from the observed local road traffic counting;this change started in 2018, thus before the COVID-19 outbreak. Over 2019–2021, a reasonable consistency of the inter-annual variability of NO2 is also found between both datasets.Our study illustrates the strong potential of TROPOMI TrC-NO2 observations for complementing the existing surface NO2 monitoring stations, especially in the poorly covered rural and maritime areas where NOx can play a key role, notably for the production of tropospheric O3.

3.
Remote Sensing ; 15(5), 2023.
Article in English | Scopus | ID: covidwho-2249374

ABSTRACT

Air pollution has become one of the factors that most affect the quality of life, human health, and the environment. Gaseous pollutants from motor vehicles have a significantly harmful effect on air quality in the Metropolitan Area of São Paulo (MASP)—Brazil. Motor vehicles emit large amounts of particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs), the last three acting as the main tropospheric ozone (O3) precursors. In this study, we evaluated the effects of these pollutants on air quality in the MASP during the partial lockdown that was imposed to ensure the social distancing necessitated by the COVID-19 pandemic. We compared the monthly data for nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) and CO, SO2, and BC from MERRA-2 for the period between April and May 2020 (during the pandemic) with the average for the same period for the (pre-pandemic) years 2017 to 2019 in the southeast region of Brazil. The meteorological and pollutant concentration data from the CETESB air quality monitoring stations for the MASP were compared with the diurnal cycle of three previous years, with regard to the monthly averages of April and May (2017, 2018, and 2019) and the same period in 2020, when the partial lockdown was first imposed in southeast Brazil. Our findings showed that there was a decrease in NO2 concentrations ranging from 10% to more than 60% in the MASP and the Metropolitan Area of Rio de Janeiro (MARJ), whereas in the Metropolitan Area of Belo Horizonte and Vitoria (MABH and MAV, respectively), there was a reduction of around 10%. In the case of the concentrations of CO and BC from MERRA-2, there was a considerable decrease (approx. 10%) during the period of partial lockdown caused by COVID-19 throughout almost the entire state of São Paulo, particularly in the region bordering the state of Rio de Janeiro. The concentration of SO2 from MERRA-2 was 5 to 10% lower in the MASP and MARJ and the west of the MABH, and there was a decrease of 30 to 50% on the border between the states of São Paulo and Rio de Janeiro, while in the MAV region, there was an increase in pollutant levels, as this region was not significantly affected by the COVID-19 pandemic. Sharp reductions in the average hourly concentrations of CO (38.8%), NO (44.9%), NO2 (38.7%), and PM2.5 (6%) were noted at the CETESB air quality monitoring stations in the MASP during the partial lockdown in 2020 compared with the hourly average rate in the pre-pandemic period. In contrast, there was an increase of approximately 16.0% in O3 concentrations in urban areas that are seriously affected by vehicular emissions, which is probably related to a decrease in NOx. © 2023 by the authors.

4.
Atmospheric Environment ; 293, 2023.
Article in English | Scopus | ID: covidwho-2240348

ABSTRACT

The analysis of the daily spatial patterns of near-surface Nitrogen dioxide (NO2) concentrations can assist decision makers mitigate this common air pollutant in urban areas. However, comparative analysis of NO2 estimates in different urban agglomerations of China is limited. In this study, a new linear mixed effect model (LME) with multi-source spatiotemporal data is proposed to estimate daily NO2 concentrations at high accuracy based on the land-use regression (LUR) model and Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) products. In addition, three models for NO2 concentration estimation were evaluated and compared in four Chinese urban agglomerations from 2018 to 2020, including the COVID-19 closed management period. Each model included a unique combination of methods and satellite NO2 products: ModelⅠ: LUR model with OMI products;Model Ⅱ: LUR model with TropOMI products;Model Ⅱ: LME model with TropOMI products. The results show that the LME model outperformed the LUR model in all four urban agglomerations as the average RMSE decreased by 16.09% due to the consideration of atmospheric dispersion random effects, and using TropOMI instead of OMI products can improve the accuracy. Based on our NO2 estimations, pollution hotspots were identified, and pollution anomalies during the COVID-19 period were explored for two periods;the lockdown and revenge pollution periods. The largest NO2 pollution difference between the hotspot and non-hotspot areas occurred in the second period, especially in the heavy industrial urban agglomerations. © 2022 Elsevier Ltd

5.
Atmospheric Chemistry and Physics ; 22(17):11203-11215, 2022.
Article in English | ProQuest Central | ID: covidwho-2025099

ABSTRACT

We use satellite methane observations from the Tropospheric Monitoring Instrument (TROPOMI), for May 2018 to February 2020, to quantify methane emissions from individual oil and natural gas (O/G) basins in the US and Canada using a high-resolution (∼25 km) atmospheric inverse analysis. Our satellite-derived emission estimates show good consistency with in situ field measurements (R=0.96) in 14 O/G basins distributed across the US and Canada. Aggregating our results to the national scale, we obtain O/G-related methane emission estimates of12.6±2.1 Tg a-1 for the US and 2.2±0.6 Tg a-1 for Canada, 80 % and 40 %, respectively, higher than the national inventories reported to the United Nations. About 70 % of the discrepancy in the US Environmental Protection Agency (EPA) inventory can be attributed to five O/G basins, the Permian, Haynesville, Anadarko, Eagle Ford, and Barnett basins, which in total account for 40 % of US emissions. We show more generally that our TROPOMI inversion framework can quantify methane emissions exceeding 0.2–0.5 Tg a-1 from individual O/G basins, thus providing an effective tool for monitoring methane emissions from large O/G basins globally.

6.
Atmospheric Chemistry and Physics ; 22(16):10875-10900, 2022.
Article in English | ProQuest Central | ID: covidwho-2025096

ABSTRACT

The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable source of information to monitor the NOx emissions that adversely affect air quality. We conduct a series of experiments using a 4×4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April–September 2019 in eastern Texas to evaluate the multiple challenges that arise from reconciling the NOx emissions in model simulations with TROPOMI. We find an increase in NO2 (+17 % in urban areas) when transitioning from the TROPOMI NO2 version 1.3 algorithm to the version 2.3.1 algorithm in eastern Texas, with the greatest difference (+25 %) in the city centers and smaller differences (+5 %) in less polluted areas. We find that lightningNOx emissions in the model simulation contribute up to 24 % of the column NO2 in the areas over the Gulf of Mexico and 8% in Texas urban areas. NOx emissions inventories, when using locally resolved inputs, agree with NOx emissions derived from TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances, with a small NOx underestimate in Dallas–Fort Worth (-13 %) and Houston (-20 %). In the vicinity of large power plant plumes (e.g., Martin Lake and Limestone) we find larger disagreements, i.e., the satellite NO2 is consistently smaller by 40 %–60 % than the modeled NO2, which incorporates measured stack emissions. We find that TROPOMI is having difficulty distinguishingNO2 attributed to power plants from the background NO2 concentrations in Texas – an area with atmospheric conditions that cause short NO2 lifetimes. Second, the NOx/NO2 ratio in the model may be underestimated due to the 4 km grid cell size. To understand ozone formation regimes in the area, we combine NO2 column information with formaldehyde (HCHO) column information. We find modest low biases in the model relative to TROPOMI HCHO, with -9 % underestimate in eastern Texas and -21 % in areas of central Texas with lower biogenic volatile organic compound (VOC) emissions. Ozone formation regimes at the time of the early afternoon overpass are NOx limited almost everywhere in the domain, except along the Houston Ship Channel, near the Dallas/Fort Worth International airport, and in the presence of undiluted power plant plumes. There are likely NOx-saturated ozone formation conditions in the early morning hours that TROPOMI cannot observe and would be well-suited for analysis with NO2 and HCHO from the upcoming TEMPO (Tropospheric Emissions: Monitoring Pollution) mission. This study highlights that TROPOMI measurements offer a valuable means to validate emissions inventories and ozone formation regimes, with important limitations.

7.
Atmospheric Chemistry and Physics ; 22(15):10319-10351, 2022.
Article in English | ProQuest Central | ID: covidwho-1994379

ABSTRACT

The aim of this paper is to highlight how TROPOspheric Monitoring Instrument (TROPOMI) trace gas data can best be used and interpreted to understand event-based impacts on air quality from regional to city scales around the globe. For this study, we present the observed changes in the atmospheric column amounts of five trace gases (NO2, SO2, CO, HCHO, and CHOCHO) detected by the Sentinel-5P TROPOMI instrument and driven by reductions in anthropogenic emissions due to COVID-19 lockdown measures in 2020. We report clear COVID-19-related decreases in TROPOMI NO2 column amounts on all continents. For megacities, reductions in column amounts of tropospheric NO2 range between 14 % and 63 %. For China and India, supported by NO2 observations, where the primary source of anthropogenic SO2 is coal-fired power generation, we were able to detect sector-specific emission changes using the SO2 data. For HCHO and CHOCHO, we consistently observe anthropogenic changes in 2-week-averaged column amounts over China and India during the early phases of the lockdown periods. That these variations over such a short timescale are detectable from space is due to the high resolution and improved sensitivity of the TROPOMI instrument. For CO, we observe a small reduction over China, which is in concert with the other trace gas reductions observed during lockdown;however, large interannual differences prevent firm conclusions from being drawn. The joint analysis of COVID-19-lockdown-driven reductions in satellite-observed trace gas column amounts using the latest operational and scientific retrieval techniques for five species concomitantly is unprecedented. However, the meteorologically and seasonally driven variability of the five trace gases does not allow for drawing fully quantitative conclusions on the reduction in anthropogenic emissions based on TROPOMI observations alone. We anticipate that in future the combined use of inverse modeling techniques with the high spatial resolution data from S5P/TROPOMI for all observed trace gases presented here will yield a significantly improved sector-specific, space-based analysis of the impact of COVID-19 lockdown measures as compared to other existing satellite observations. Such analyses will further enhance the scientific impact and societal relevance of the TROPOMI mission.

8.
2021 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2021 ; : 405-408, 2021.
Article in English | Scopus | ID: covidwho-1922715

ABSTRACT

In the present study Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellite derived Aerosol Optical Depth (AOD) and the Ozone Monitoring Instrument (OMI) onboard Aura satellite derived Single Scattering Albedo (SSA) data sets were used to demonstrate the regional variation in aerosol radiative forcing during covid-19 imposed lockdown over the urban climate of Ahmedabad city. An analysis of short-wave (0.25um to 4.0 um) Instantaneous Direct Aerosol Radiative forcing (IDARF) is done using these satellite data as inputs to the Radiative Transfer model - SBDART. Result shows reduction in IDARF by the month of April-2020 and highest reduction in the month of May. Value of IDARF for May is around 22.785 Wm-2, which is 40.21% less than the mean value of IDARF from pre lockdown to post lockdown. Which indicates Negative Radiative Forcing (Net Cooling Effect). Magnitude of IDARF during lockdown and post lockdown are found to be 34.49 Wm-2 and 71.62 Wm-2 which is 87.94% higher than the mean value of IDARF from pre lockdown to post lockdown. Which suggest Positive Radiative Forcing (Net Warming Effect). © 2021 IEEE.

9.
Atmosphere ; 13(5):840, 2022.
Article in English | ProQuest Central | ID: covidwho-1871343

ABSTRACT

In this article, we aim to show the capabilities, benefits, as well as restrictions, of three different air quality-related information sources, namely the Sentinel-5Precursor TROPOspheric Monitoring Instrument (TROPOMI) space-born observations, the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based measurements and the LOng Term Ozone Simulation-EURopean Operational Smog (LOTOS-EUROS) chemical transport modelling system simulations. The tropospheric NO2 concentrations between 2018 and 2021 are discussed as air quality indicators for the Greek cities of Thessaloniki and Ioannina. Each dataset was analysed in an autonomous manner and, without disregarding their differences, the common air quality picture that they provide is revealed. All three systems report a clear seasonal pattern, with high NO2 levels during wintertime and lower NO2 levels during summertime, reflecting the importance of photochemistry in the abatement of this air pollutant. The spatial patterns of the NO2 load, obtained by both space-born observations and model simulations, show the undeniable variability of the NO2 load within the urban agglomerations. Furthermore, a clear diurnal variability is clearly identified by the ground-based measurements, as well as a Sunday minimum NO2 load effect, alongside the rest of the sources of air quality information. Within their individual strengths and limitations, the space-borne observations, the ground-based measurements, and the chemical transport modelling simulations demonstrate unequivocally their ability to report on the air quality situation in urban locations.

10.
Atmospheric Chemistry and Physics ; 22(6):4201-4236, 2022.
Article in English | ProQuest Central | ID: covidwho-1771559

ABSTRACT

The COVID-19 lockdown had a large impact on anthropogenic emissions of air pollutants and particularly on nitrogen dioxide (NO2). While the overall NO2 decline over some large cities is well-established, understanding the details remains a challenge since multiple source categories contribute. In this study, a new method of isolation of three components (background NO2, NO2 from urban sources, and NO2 from industrial point sources) is applied to estimate the impact of the COVID-19 lockdown on each of them. The approach is based on fitting satellite data by a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis. Population density and surface elevation data as well as coordinates of industrial sources were used in the analysis. The tropospheric NO2 vertical column density (VCD) values measured by the Tropospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor over 261 urban areas for the period from 16 March to 15 June 2020 were compared with the average VCD values for the same period in 2018 and 2019. While the background NO2 component remained almost unchanged, the urban NO2 component declined by -18 % to -28 % over most regions. India, South America, and a part of Europe (particularly, Italy, France, and Spain) demonstrated a-40 % to -50 % urban emission decline. In contrast, the decline over urban areas in China, where the lockdown was over during the analysed period, was, on average, only -4.4±8 %. Emissions from large industrial sources in the analysed urban areas varied greatly from region to region from -4.8±6 % for China to -40±10 % for India. Estimated changes in urban emissions are correlated with changes in Google mobility data (the correlation coefficient is 0.62) confirming that changes in traffic were one of the key elements in the decline in urban NO2 emissions. No correlation was found between changes in background NO2 and Google mobility data. On the global scale, the background and urban components were remarkably stable in 2018, 2019, and 2021, with averages of all analysed areas all being within ±2.5 % and suggesting that there were no substantial drifts or shifts in TROPOMI data. The 2020 data are clearly an outlier: in 2020, the mean background component for all analysed areas (without China) was -6.0%±1.2 % and the mean urban component was -26.7±2.6 % or 20σ below the baseline level from the other years.

11.
Atmospheric Measurement Techniques ; 15(5):1415-1438, 2022.
Article in English | ProQuest Central | ID: covidwho-1744756

ABSTRACT

TROPOMI (TROPOspheric Monitoring Instrument) measurements of tropospheric NO2 columns provide powerful information on emissions of air pollution by ships on open sea. This information is potentially useful for authorities to help determine the (non-)compliance of ships with increasingly stringent NOx emission regulations. We find that the information quality is improved further by recent upgrades in the TROPOMI cloud retrieval and an optimal data selection. We show that the superior spatial resolution of TROPOMI allows for the detection of several lanes of NO2 pollution ranging from the Aegean Sea near Greece to the Skagerrak in Scandinavia, which have not been detected with other satellite instruments before. Additionally, we demonstrate that under conditions of sun glint TROPOMI's vertical sensitivity to NO2 in the marine boundary layer increases by up to 60 %. The benefits of sun glint are most prominent under clear-sky situations when sea surface winds are low but slightly above zero (±2 m s-1). Beyond spatial resolution and sun glint, we examine for the first time the impact of the recently improved cloud algorithm on the TROPOMI NO2 retrieval quality, both over sea and over land. We find that the new FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A band) wide algorithm leads to 50 hPa lower cloud pressures, correcting a known high bias, and produces 1–4×1015 molec. cm-2 higher retrieved NO2 columns, thereby at least partially correcting for the previously reported low bias in the TROPOMI NO2 product. By training an artificial neural network on the four available periods with standard and FRESCO+ wide test retrievals, we develop a historic, consistent TROPOMI NO2 data set spanning the years 2019 and 2020. This improved data set shows stronger (35 %–75 %) and sharper (10 %–35 %) shipping NO2 signals compared to co-sampled measurements from OMI. We apply our improved data set to investigate the impact of the COVID-19 pandemic on ship NO2 pollution over European seas and find indications that NOx emissions from ships reduced by 10 %–20 % during the beginning of the COVID-19 pandemic in 2020. The reductions in ship NO2 pollution start in March–April 2020, in line with changes in shipping activity inferred from automatic identification system (AIS) data on ship location, speed, and engine.

12.
Atmospheric Chemistry and Physics ; 22(4):2745-2767, 2022.
Article in English | ProQuest Central | ID: covidwho-1716002

ABSTRACT

Satellite observations of the high-resolution TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel-5 Precursor can be used to observe nitrogen dioxide (NO2) at city scales to quantify short time variability of nitrogen oxide (NOx) emissions and lifetimes on a daily and seasonal basis. In this study, 2 years of TROPOMI tropospheric NO2 columns, having a spatial resolution of up to 3.5 km × 5.5 km, have been analyzed together with wind and ozone data. NOx lifetimes and emission fluxes are estimated for 50 different NOx sources comprising cities, isolated power plants, industrial regions, oil fields, and regions with a mix of sources distributed around the world. The retrieved NOx emissions are in agreement with other TROPOMI-based estimates and reproduce the variability seen in power plant stack measurements but are in general lower than the analyzed stack measurements and emission inventory results. Separation into seasons shows a clear seasonal dependence of NOx emissions with in general the highest emissions during winter, except for isolated power plants and especially sources in hot desert climates, where the opposite is found. The NOx lifetime shows a systematic latitudinal dependence with an increase in lifetime from 2 to 8 h with latitude but only a weak seasonal dependence. For most of the 50 sources including the city of Wuhan in China, a clear weekly pattern of NOx emissions is found, with weekend-to-weekday ratios of up to 0.5 but with a high variability for the different locations. During the Covid-19 lockdown period in 2020, strong reductions in the NOx emissions were observed for New Delhi, Buenos Aires, and Madrid.

13.
Zhongguo Jishui Paishui = China Water & Wastewater ; - (24):1, 2021.
Article in English | ProQuest Central | ID: covidwho-1699231

ABSTRACT

This paper studied the influencing factors of disinfection effect in water purification process and the influence of external demand on the water purification process to ensure that the effective virus inactivation rate of waterworks can meet the requirements of microbiological safety during the COVID-19 outbreak. The results showed that the effluent turbidity should be no more than 0. 3 NTU to meet the requirements of coagulation sedimentation filtration process for virus 2-lg removal rate under the condition of the fixed source water temperature and pH value. On the basis of the above,with the monitoring of the effluent turbidity,water level of clean water tank,water quantity of waterworks and residual chlorine by real-time online instruments,the CT value of the clean water tank was controlled and adjusted within an appropriate range in real time,so that it not only met the 4-lg virus inactivation rate but also reduced the risk of disinfection by-products. Finally,a virus reduction rate of above 6-lg was achieved with the treatment process of waterworks,which could meet the biological safety requirements of drinking water during the epidemic,and have a sufficient safety margin.

SELECTION OF CITATIONS
SEARCH DETAIL